
 1

Popular Electronics AUGUST 1976

Build The COSMAC "ELF" A Low-Cost

Experimenter's Microcomputer
BY JOSEPH WEISBECKER

 Part 1: Simple-to-build computer trainer can be expanded for

 advanced applications

 Part 2: Some hardware improvements and more programming

 details

 Part 3: How to expand memory, plus more programs

 Part4: Build the PIXIE Graphic Display - Adding one chip

 to the Elf provides complete video interface

 and animated graphicscapability for less than $25

 2

Build The COSMAC "ELF" A Low-Cost

Experimenter's Microcomputer

Part 1

PE Tested

Simple-to-build computer trainer can be expanded for advanced

applications.

BY JOSEPH WEISBECKER

There are basically two ways in which you can get involved with microcomputers

on the nonprofessional level. You can buy one of several reasonably priced hobby

computer kits, add a TV or typewriter terminal, and learn to use high-level

language. On the other hand, you can build your own inexpensive system from

scratch. This permits you to experiment with simple applications that do not

require an expensive terminal or a large memory. You can communicate with the

computer in a relatively simple language.

The "Elf" microcomputer project gives you the latter category of computer system

-- for about $80. It is an excellent hardware and software trainer that uses machine

language and can be easily expanded to do just about anything a full-blown

microcomputer can. Packaging, however, is up to you.

 3

The basic Elf has toggle-switch input, hex LED display, 256 bytes of RAM, four

input lines and a latched output line. It can be used to play games, sequence lights,

control motors, generate test pulses, count or time events, monitor intruder-alert

devices, etc. You can do all these things while learning how to program in order to

produce a "real" output to determine whether or not the program you designed

works. If you prefer not to control or time things, a simple LED can be used to

indicate whether or not your program works.

Our focus here is on the construction of the low-cost computer and some simple

examples of programming.

Design Details. The heart of the Elf microcomputer is the new RCA CDP1802

COSMAC microprocessor chip that sells for less than $30. The chip can use any

combination of standard RAM and ROM devices and can address up to 65,536 (65

k) bytes of memory. It has flexible programmed I/O and program-interrupt modes,

an on-chip DMA (direct memory access), four I/O flag inputs directly tested by

branch instructions, and a 16 x 16 matrix of registers for use as multiple program

counters, data pointers, or data registers.

Other features of the 1802 chip include voltage operation between 3 and 12 volts

dc at very low current drain, TTL compatibility, built-in clock, and simplified

interfacing. There is also a built-in program loading capability that allows you to

load a sequence of bytes without having to toggle in a new address for each byte.

No ROM is required for the minimum trainer system described here. The multiple

program counters permit some interesting programming "tricks," and the many

single byte instructions keep programs short.

A block diagram of the Elf system is shown in Fig. 1. The pinout for the 1802

microprocessor chip is shown in Fig. 2.

Fig. 1. Block diagram of basic computer. Up to 65K bytes of memory, 91

instructions, and varied I/O ports can be added as the system grows.

 4

Fig. 2. Pin out for the CDP1802 COSMAC microprocessor.

Basic Operation. The key to understanding the computer is the method used for

addressing the memory. At first, the procedure may appear to be complicated, but

you will soon see that it is not difficult.

The 1802 chip contains 16 general-purpose registers, each holding 16 bits (two

bytes) of memory addresses for data. The registers are labeled R0 through RF to

conform to the hexadecimal numbering system, as shown in Fig. 3. (In the

diagrams, and in computer technology in general, a Danish zero -- a zero with a

slash through it -- is used to distinguish zero from a capital letter O.) Hence, if we

refer to the low-order, or least-significant, byte of R1, we can call it R1.0, while

the high order byte of RF would be called RF.1.

Fig. 3. The 16 registers in the 1802 are labelled R0 through RF (hex).

There is also an 8-bit D register that is used to move bytes around. In the

instruction set shown in part in the instruction Subset Table, note that the 8N (8

with a digit) code will copy a low order general register byte into register D.

Writing this instruction as 81 in a program will cause R1.0 to be copied into D

when the instruction is executed. We can then use instruction BF (BN in the table,

with B and a digit) to copy the D byte into RF.1. It takes two bytes, 81 BF, to

transfer a byte from R1.0 to RF.1 via temporary holding register D. The byte in D

 5

can also be used in arithmetic operations performed by the ALU (arithmetic logic

unit) circuits.

There are three other important registers that are labelled N, P, and X. Each can

hold a 4-bit digit that is used to select one of the 16 general-purpose registers. For

example, if you wanted to talk about the general-purpose register selected by the

hex digit in X, you would call it RX. If you wanted just the low-order byte of RX,

call it RX.0. RN would refer to the general-purpose register designated by the 4-

bit digit currently contained in N; if the digit is 4, RN = R4.

The general-purpose registers can contain 16-bit memory addresses. Suppose

register R3 contains data 0012. M3 would mean the memory location specified by

the contents of R3, and M(0012) means memory location 0012 directly. MX

means the memory location addressed by the contents of the general register

selected by the current digit in X. If X = 3, MX = M3; if R3 = 0012, MX = M3 =

M(0012).

Since the basic computer has only 256 bytes of memory, we use just the low-order

bytes of the general registers to address the memory. In expanded-memory

systems, you can use the high-order bytes of the general-purpose registers to select

individual 256-byte pages of random-access memory (RAM).

Fig. 5. Control circuits for the computer. Connections at right go to similarly

marked connections on main circuit.

 6

Fig. 4. Complete circuit for the Elf computer. Identified connections on the left go

to the "front panel" with the eight data switches. The remaining can be left

"floating" at 1802, or tied to terminal strip.

PARTS LIST

 C1, C2--10-µF, 16-

volt electrolytic capacitor

 C3, C4--30-pF disc

capacitor

 D1 through D6--IN914

switching diode

 IC1--CDP1802

COSMAC

microprocessor chip

(RCA)

 IC2, IC3--2101 (256 x

4) static RAM IC

 IC4, IC5--4050

noninverting hex buffer

IC

 IC12--4013 dual D flip-

flop IC

 IC13--LM309K 5-volt

regulator IC

 LED1--Red light-

emitting diode

 R1 through R9--

47,000-ohm, ¼-watt

resistor

 R10--470-ohm, ¼-watt

resistor

 R11--10-megohm, ¼-

watt resistor

 S1 through S11--Spdt

toggle switch

5½" x 2" (14 x 5.1cm)

piece of thin aluminum;

¾" x 3/8" (19.1 x 9.5 cm)

pine for chassis rails; 14-

pin IC sockets (4); 16-

pin IC sockets (3); 22-

pin IC sockets (2); 40-

pin IC socket; connector

for power supply; 9-volt,

350-mA dc power

source; 1¼" x ¾" x 1/8"

(31.8 x 19.1 x 3.2 mm)

piece of aluminum; dry-

transfer lettering kit;

machine and wood

 7

 IC6, IC7--Hex LED

display (H-P No. 5082-

7340)

 IC8, IC9--4016 quad

bilateral switch IC

 IC10--4023 triple 3-

input NAND gate IC

 IC11--4049 inverting

hex buffer IC

 S12--Pushbutton switch

with one set each

normally open and

normally closed contacts

 XTAL--1-to-2-MHz

crystal (see text)

 Misc.--5½" x 4" (14 x

10.1cm) perforated board

with 0.1" (2.54 cm) hole

spacing;

hardware; hookup wire;

solder; etc.

Note: the CDP1802

COSMAC

microprocessor chip is

available from any RCA

parts distributor as is the

COSMAC user manual.

The memory contains both instructions and data bytes. Instruction bytes tell the

computer what to do with the data bytes. One-byte instructions have two hex

digits, where high-order bits 7, 6, 5, and 4 tell the computer what type of operation

to perform. Low-order bits, 3, 2, 1, and 0 are usually placed in the N register when

a new instruction is fetched from memory.

Any one of the general-purpose registers can be used as a program counter. The

program counter addresses instruction bytes in memory. Each time an instruction

is fetched from memory, the program counter is automatically incremented so that

it points to the next instruction to be fetched. Branch instructions can be used to

change the address in the program counter to permit jumping (branching) to a

different part of the program when desired. The digit in the 4-bit P register

specifies which 16-bit general-purpose register is being used as the program

counter.

Timing Sequence. Since many of the 1802 microprocessor's instructions are only

one-byte long and require two machine cycles, the first cycle is always an

instruction fetch, or memory read. The fetched instruction is executed during the

next machine cycle, which could be a memory-read memory-write, or register-

transfer type of cycle.

Program execution always consists of a sequence of fetch-execute cycles, and the

two SC0 and SC1 lines (see Fig. 4 and Fig. 5) indicate what type of cycle is being

performed according to the following criteria:

SC1 SC0 Type of Machine Cycle

0 0 instruction fetch

0 1 instruction execute

1 0 DMA in/out

1 1 interrupt

Direct memory access (DMA) and interrupt are special types of cycles, which we

will discuss later.

Circuit timing is shown in Fig. 6.

 8

Note that each machine cycle requires eight clock pulses.

Fig. 6. Microprocessor timing. One machine cycle requires eight clock pulses.

TPA and TPB control various functions, both on and off the computer.

The microprocessor has an internal single-phase clock circuit. Connecting a

crystal between pins 1 and 39 of the 1802 chip causes the clock to run

continuously. If desired, XTAL, C3, C4, and R11 can be omitted and an external

clock with a 5-volt swing can be substituted between pin 1 and ground.

During each machine cycle, timing pulses TPA and TPB are available at pins 33

and 34 of the 1802. TPA occurs at the beginning of each machine cycle and can be

used to clock the high-order byte of a 16-bit memory address into a memory page-

selection register. Note that the 1802 sends out memory addresses as two 8-bit

bytes. The high-order byte appears on address lines A0 through A7 first. Then the

low-order byte is held on the A0 through A7 lines for the remainder of the

machine cycle. This low-order address byte can, by itself, specify one of 256

locations in the minimum 256-byte memory.

TPB occurs toward the end of the machine cycle and is used to clock a byte from

the RAM into an output device (such as the hex display used here). An input byte,

to be stored in the RAM, is gated to the bus for the duration of the input (memory-

write) machine cycle so that no time pulse is needed for input bytes.

The ~MREAD line is low during any memory-read machine cycle. When low, it

opens the pin-18 RAM data output gates of IC2 and IC3, permitting the byte

stored in the RAM location addressed by A0 through A7 to appear on the data bus.

The RAM's access time is such that the output byte appears on the bus prior to

TPB. The bus byte from the RAM can then be clocked into an internal register of

the 1802 or clocked to an external register (such as the hex display) with TPB,

depending on the type of instruction being executed.

[Note: The ~MREAD above has a line over the MREAD instead of using the tilde,

in the article. However, there isn't any HTML tag to put a line over characters, so

I'm using the tilde convention instead. The overhead line, or tilde represent active-

low signals.]

When the 1802 is performing an instruction cycle that requires a byte to be stored

in the RAM, the ~MREAD line is held high to disable the RAM output bus gates.

The microprocessor then causes the byte stored in the RAM to be gated onto the

bus during the memory-write cycle. This byte can come from an internal register

of the 1802 or from an input device such as switches, depending on the type of

 9

instruction being executed. The 1802 then generates a low memory-write pulse

(~MWR) that causes the bus byte to be stored in the RAM location addressed by

the A0 through A7 lines.

Circuit Operation. Using Fig.4, Fig.5, and the Instruction Subset Table we can

now discuss the logic of the Elf microcomputer. The RAM access is sent out on

lines A0 through A7. Eight tri-state bidirectional bus lines are used to transfer the

data bytes back and forth between the 1802's registers and the IC2-IC3 RAM. A

RAM byte can be transferred to hex displays IC6 and IC7 via the data bus using

IC4 and IC5 to supply the current drive for the displays. Displays IC6 and IC7

contain latches to store the display byte.

The basic clock frequency of the processor is determined by XTAL which should

not go above 2 MHz in this circuit. The ~MREAD and ~MWR lines control the

read and write cycles of the RAM, while TPA and TPB provide the timing pulses.

TPA can be used for memory expansion address latching. TPB to clock bytes into

output circuits. SC0 and SC1 indicate the type of cycle being performed by the

1802.

The N0, N1, and N2 lines are used to select input or output devices in the Elf,

selection can be made among four input and four output devices. The table details

the values of the N0, N1, and N2 lines during the machine cycle in which an input

or output instruction is executed. Instructions 69, 6A, 6B, 61, 62, and 63 are spares

that can be used to add I/O devices or ports to the computer. When 6C is executed,

the N2 line goes to a logic-1 state and the bus byte is written into the RAM. Since

this is a write cycle, ~MREAD will be high. With both N2 and ~MREAD high,

the output of gate IC10C will be low, putting the input toggle switch byte on the

bus so that it can be stored at the memory location addressed by RX. This input

byte will also be placed in the 1802's D register.

When a 64 instruction is executed, N2 is high and ~MREAD is low, making the

output of IC10C high and preventing the input switch byte from getting onto the

bus. Instead, gate IC10B generates an output clock pulse with TPB that clocks the

RAM output byte into the hex display.

The four external flag input lines– EF1, EF2, EF3, and EF4–can be pulled low by

external switches. These four lines can be tested by instructions 34, 3C, 35, 3D, 36,

3E, 37 and 3F. Note in Fig. 5 that the INPUT pushbutton switch, debounced by

portions of IC11, is connected to the ~EF4 line. This means that ~EF4 = 1 when

S12 is depressed and ~EF4 = 0 when S12 is in its normal position.

Latched output line Q can be set high by a 7B instruction or reset to low by a 7A

instruction. The Q LED comes on when Q is high. The ~DMA~IN, ~DMA~OUT,

and ~INTERRUPT lines can be pulled low to cause these operations to occur.

 10

ONE BYTE INSTRUCTIONS TWO BYTE INSTRUCTIONS

1N RN+1 30MM GO TO MM

2N RN-1 31MM GO TO MM IF Q=1

8N RN,0–>D 39MM GO TO MM IF Q=0

9N RN,1–>D 32MM GO TO MM IF D=00

AN D–>RN.0 3AMM GO TO MM IF D != 00

BN D–>RN.1 33MM GO TO MM IF DF=1

4N MN–>D,RN+1 38MM GO TO MM IF DF=0

5N D–>MN 34MM GO TO MM IF EF1=1

DN N–>P 3CMM GO TO MM IF EF1=0

EN N–>X 35MM GO TO MM IF EF2=1

7A 0–>Q (LIGHT OFF) 3DMM GO TO MM IF EF2=0

7B 1–>Q (LIGHT ON) 36MM GO TO MM IF EF3=1

F0 MX–>D 3EMM GO TO MM IF EF3=0

F1 MX or D–>D 37MM
GO TO MM IF EF4=1 {IN

SWITCH

F2 MX and D–>D 3FMM
GO TO MM IF EF4=0 {IN

SWITCH

F3 MX xor D–>D F8KK KK–>D

F6 SHIFT D RIGHT, BIT 0–>DF F9KK KK or D–>D

76
ROTATE D RIGHT, DF–

>B7,B0–>DF
FAKK KK and D–>D

FE SHIFT D LEFT, BIT 7–>DF FBKK KK xor D–>D

7E
ROTATE D LEFT, DF–>B0,B7–

>DF
FDKK KK-D–>D,CARRY–>DF

F5 MX-D–>D,CARRY–>DF FFKK D-KK–>D,CARRY–>DF

F7 D-MX–>D,CARRY–>DF FCKK KK+D–>D,CARRY–>DF

F4 MX+D–>D,CARRY–>DF 7CKK KK+D+DF–>D,CARRY–>DF

ONE BYTE INPUT

INSTRUCTIONS
N2 N1 N0

1-BYTE OUTPUT

INSTRUCTIONS
N2 N1 N0

69 BUS–>MX,D 0 0 1 61 MX–>BUS,RX+1 0 0 1

6A BUS–>MX,D 0 1 0 62 MX–>BUS,RX+1 0 1 0

6B BUS–>MX,D 0 1 1 63 MX–>BUS,RX+1 0 1 1

6C
INPUT SWITCH

BYTE–>MX,D
1 0 0 64

MX–>HEX

DISPLAY,RX+1
1 0 0

Table 1. Instruction Subset Table shows required sequence of steps.

 11

The ~LOAD and RUN lines control the operation of the microprocessor according

to the following conditions:

~LOAD RUN Mode

gnd gnd load

+5V gnd reset

gnd +5V –

+5V +5V run

RUN and LOAD switches S1 and S2 in Fig. 5 control the operation of the

computer. With both switches set to OFF, ~LOAD is +5V and RUN is at ground

potential. This resets the 1802. Neither TPA nor TPB are generated in the reset

state and R0 = 0000, P = 0, X = 0 and Q = 0 after the 1802 is reset. When the

LOAD switch is set to ON, ~LOAD goes low and RUN stays low, forcing the

system into the load mode. Now you can load a sequence of bytes into the RAM,

starting at address 0000, by setting the bytes into the input toggle switches, one at

a time, and operating the INPUT switch.

In the load mode, the 1802 does not execute instructions but waits for a low to

appear on the ~DMA~IN line. When this happens, the 1802 performs one memory

write cycle during which the switch input byte is stored in memory. R0 is used to

address memory. during the DMA IN cycle. After the input byte is stored at the

address specified by R0, this register is incremented by one so that input bytes will

be sequentially loaded into RAM locations. Line SC1 goes high during the DMA

IN cycle so that the control circuits know when the input byte has been stored in

the RAM.

Fig. 7. Program turns on Q-LED when INPUT switch is operated.

 12

INTRODUCTION TO PROGRAMMING

Once you have built your Elf, you must

learn how to load a sequence of bytes

into memory and then go back and

display the sequence. Let us write a

simple program that can be loaded into

the memory and run.

 Suppose you want to program the

computer to turn on the Q LED whenever

the INPUT switch is set to ON. First, you

must draw a flow chart that shows the

required sequence of steps (Fig. 7).

Locate the correct instructions in the

Instruction Subset Table. A 7A

instruction will perform Step 1. Load this

instruction into M(0000). Note that when

the INPUT switch is not depressed, EF4

= 0. A two-byte 3F 00 instruction will

jump (branch) back to the 7A instruction

at M(0000) as long as the INPUT switch

is not operated (EF4 = 0). This condition

is known as a "loop," and the program

will stay in this loop while it is waiting

for the INPUT switch to be depressed.

Load 3F 00 into memory locations

M(0001) and M(0002) to perform the

second step in the flow chart. All GO TO

MM instructions shown in the Table put

MM into the low-order byte of the

program counter if a GO TO condition

exists. Otherwise, the next instruction in

sequence is fetched by the 1802.

Loading a one-byte 7B instruction into

M(0003) takes care of Step 3, while a 30

01 instruction will jump back to the 3F

00 instruction at M(0001). Load the 30

01 instruction at M(0004) and M(0005)

to complete the program.

You load this 6-byte program by placing

the LOAD switch on the ON position,

with RUN and MP set to OFF, setting up

the toggle switches

for the hex number 7A, and depressing

the INPUT switch. Release the INPUT

switch, insert 3F and operate the INPUT

switch again. Then load 00 and so on

until the last byte, 01, has been stored at

M(0005). If you "blow" the program, set

MP to ON and LOAD to OFF. Then set

LOAD to ON and operate the INPUT

switch until you get to the byte

immediately preceding the wrong entry.

Set MP to OFF, set up the correct byte,

and operate INPUT. Flip MP back to

ON to protect what you have stored in

memory.

To start the program running, set LOAD

to the down position to reset the 1802

and set the RUN switch to ON. Nothing

should happen until you depress the

INPUT switch, at which time the Q

LED should come on. Releasing the

INPUT switch should cause the LED to

extinguish. If you like, you can now

observe the timing signals of the 1802

on an oscilloscope while the program is

running.

Another simple program involves

counting the number of times the

INPUT switch is operated and then

turning on the Q LED at the end of the

count. The flow chart for this program is

shown in Fig. 8. When you load and run

this program, nothing will happen until

you operate the INPUT switch five

times, at which point the LED will come

on and remain on. Note in Step 1 that

you can change the number of times the

INPUT switch is operated. Step 6 just

loops on itself to terminate the program

after the INPUT switch has been

operated the specified number of times.

 13

Depressing and releasing INPUT switch S12 sets flip-flop IC12 (Fig. 5). The ~Q

output of this stage goes low, causing the required low on the ~DMA~IN line. The

1802 responds to this request with a memory-write cycle during which SC1 is

high. During this cycle, ~MREAD is high and, since LOAD switch S2 is also ON,

the N2/LOAD signal causes gate IC10C to go high, gating the switch input byte to

the data bus and storing it in memory. When SC1 goes high, it also resets IC12,

which causes ~DMA~IN to return to its high state. The computer then waits for

the next switch input byte and LOAD switch operation.

Following each DMA IN cycle, the 1802 holds the A0 through A7 lines at the

address of the byte just stored in the RAM. ~MREAD is also held low while

waiting for the next input byte. This means that the previously loaded byte is

being gated to the bus (from the RAM) while waiting for a new byte. This bus

byte is continuously clocked into the hex display, since the LOAD switch is

holding IC10B open.

Fig. 8. Program counts number of times INPUT switch is operated.

A sequence of program bytes can be loaded into the RAM starting at M0 =

M(0000) by setting the LOAD switch to the ON position, with the RUN switch set

to OFF. Set the eight input switches, S4 through S11, to the desired byte code (in

hexadecimal) and depress the INPUT switch to store the byte in the RAM. The

value of this byte will be displayed with the hex displays IC6 and IC7. Repeat this

procedure for each byte to be loaded. Setting the LOAD switch to OFF puts the

 14

1802 back in the reset state where R0 = 0000, P = 0, X = 0, and Q = 0. If you wish

to see what is stored in memory, set MP (memory-protect) switch S3 and the

LOAD switch to ON. Now, each time you operate the INPUT switch, successive

bytes in the RAM, starting with M(0000), will be displayed.

To change a byte, proceed to the byte just before the one to be changed. Flip the

MP switch to OFF, set the input toggle switches to the hex value of the new byte,

and depress the INPUT switch once. This new byte will be displayed and stored in

the RAM at the location following the byte at which you stopped. Place the MP

switch in the ON position. You can now continue to operate the INPUT switch to

sequence through the RAM without modifying the bytes in memory.

To start the executive cycle of a program, set both the LOAD and RUN switches

to OFF (to reset the 1802). Then set the RUN switch to ON. The program counter

is always specified by the hex digit in register P, which can be set to zero by reset

so that the program counter will always initially be R0. Set R0 to 0000 by

resetting so that instruction fetching, or program execution will always begin at

M(0000). Instructions will continue to be fetched from the RAM and executed

until the RUN switch is set to OFF, resettting the computer. Make sure that the

MP switch is OFF when running programs so that computer operation is not

inhibited.

Construction Notes. Hardware assembly is relatively simple, permitting the

project to be put together with ordinary perforated board with 0.1" (2.54-mm) hole

spacing and IC sockets, using either Wire Wrap® or a wiring pencil. (See photo.)

The perf board measures 5½"L × 4"W (14 × 10.2 cm) and is supported on a base

made up of lengths of ¾" × 3/8" (19.1 × 9.5) pine. A sheet of thin aluminum

provides the support for the eight toggle-type data switches. The LM309 voltage

regulator IC (IC13) is mounted on a 1¼" × ¾" × 1/8" (31.6 × 19.1 × 3.2-mm)

piece of aluminum to serve as a heat sink.

Do not mount the IC's (except the display devices) in their sockets until after all

wiring is complete. Socket, switch, and component layout should be roughly the

same as shown in the photo. Be sure to locate the crystal close to pins 1 and 39 of

the microprocessor's socket. Then wire the circuit in accordance with the

schematics in Figs. 4 and 5.

Any crystal with a frequency of between 1 and 2 MHz can be used in the Elf, or

you can substitute a simple 555 or CMOS oscillator with a 5-volt signal swing

between pin 1 of the 1802 and circuit ground, in which case, you will have to omit

XTAL, C3, C4, and R11. There is no lower limit to the clock frequency, but most

of the sample programs discussed in this series of articles are based on a clock

frequency between 1 and 1.8 MHz.

Displays IC6 and IC7 are relatively expensive hex devices. They are the only TTL

devices in the computer and, as a result, draw most of the power required by the

circuit. If you wish to economize, you can substitute ordinary LED's for the

displays. (Next month, we will discuss how to make the substitution.)

An inexpensive 9-volt, 350-mA dc battery eliminator, like those used as battery

charger/eliminators for calculators, can be used to power the Elf.

 15

When the computer is completely assembled, use a dry-transfer lettering kit to

label all switches and positions. IC socket locations, and pins 1 of all sockets.

Then, exercising the usual safety procedures for handling MOS devices, install the

integrated circuits in their respective sockets.

Coming Up. In future articles, we will provide more programs as well as methods

of adding other types of inputs and relay-control output circuits. We will also

detail how to save programs in battery-powered COSMOS RAM's and describe a

simple operating system that lets you read/write any memory location and inspect

general register contents for program debugging purposes. Memory expansion,

hex keyboard input, and an inexpensive video graphics display are other subjects

we will cover in detail.

 16

Build The COSMAC "ELF" A Low-Cost

Experimenter's Microcomputer

Part 2

Some hardware improvements and more programming details

BY JOSEPH WEISBECKER

Last month, we discussed the construction of the low-cost Elf

microcomputer/trainer and gave some examples of simple programming. This

month, we will describe hardware and how to make a low-cost LED replacement

for the relatively expensive hex display and add a simple 8-bit I/O port. Then we'll

add a 16- switch monitor that among other things will allow you to use a hex

keyboard. We'll finish up the hardware section by showing how to use a 9-volt

battery as power for a RAM circuit to hold a program for as long as six months.

When we're finished with the hardware details, it's back to the software continuing

with our programming discussion.

 17

The Hardware. The hex displays called for in the original Elf project can be

replaced with a discrete LED circuit as shown in Fig. 1. You will need a CD4508

eight-bit register, eight low-current LED's, two 4049 hex inverters, and eight 470-

ohm, ½-watt resistors. When the LED circuit is substituted for the hex displays,

current consumption will be reduced by about 150 mA. The input comes from the

data bus which formerly went to hex displays IC4 and IC5.

When you use the LED display, you must count the LED's to arrive at the hex

number displayed. The upper four LED's form the first digit, the lower four, the

second digit.

You can mount the LED's on the front panel. Be sure you carefully identify each.

Also, when making the conversion, don't forget to modify the RUN switch circuit

as shown.

You can connect an inexpensive cadmium-sulfide (CdS) cell between the EF1 line

and ground. Be sure to use a photocell that has a dark resistance in excess of

200,000 ohms and a light resistance of less than 10,000 ohms. If you use any other

photocell, you may have to increase the value of the resistor to pull up the EF1

line of the 1802 microprocessor. The high input impedance of the CMOS logic

eliminates the need for photocell amplification. Also several photocell inputs can

be used, each connected to a different flag (EF) line.

Using a photocell input, you can program the computer to start counting when an

object moves past one photocell and stop counting when the object passes a

second cell. This technique allows you to determine the speed of a moving object.

It can also be used to count people, monitor motor speed, provide targets in a

computer-controlled light gun or "eyes" for a computer-controlled robot, etc.

Magnetic reed switches, simple make/break switches, or similar devices can be

connected to the computer via the flag-line inputs.

Several inexpensive methods of expanding the number of input and output lines

can be used with this computer. One example is shown in Fig. 2. Here, a CD4058

IC is used in both the input and the output positions, while other IC's provide the

necessary gating. A 69 instruction will store the values of the eight input lines in

memory as a single byte.

In the output port section, a 61 instruction sets a memory byte into this port. The

output port can control up to eight output lines, but you will have to add

CD4050/CD4049 buffers if you wish to drive TTL loads. You can use these

output lines to drive suitable transistors to control relays, lamps or LED's, or

battery-powered motors, you can have the computer sequence lights, control

animated displays or robots, or control a slide projector in response to tones from

an audio tape. You can use the existing Q line output in the same manner for a

single operation.

 18

Fig. 1 (9) Circuit for a discrete LED display.

Fig. 2.(10) A way to expand the number of input and output lines using two

CD4508 integrated circuits.

 19

A simple method of controlling up to 16 output lines or monitoring the states of 16

switches is shown in Fig. 3. A 62 instruction will set the low-order digit of a

memory byte into the 4-bit CD4515 register. The output line corresponding to this

digit will go low, while the other 15 remain high. To make things more interesting,

the computer can determine whether the switch attached to the selected output line

is closed or not by testing EF2 with a branch instruction.

Fig. 3.(11) A method of controlling up to 16 outputs.

The following program continuously examines all 16 switches in sequence and

stops with the number of any closed switch from 0 to F in the low-order digit of

R3.0:

Step M Bytes Comment

 1 0000 F8 FF A2 FF-->R2.0 (memory pointer)

 2 0003 13 52 E2 R3 + 1, R3.0-->MX, 2-->X

 3 0006 62 22 MX-->CD4515 (select switch)

 4 0008 3D 03 Repeat step 2 if switch is open

 5 000A 30 0A Stop with R3.0 = closed switch number

The diodes can be omitted if only one switch at a time will be closed. This circuit

and an appropriate program could permit data and instruction bytes to be loaded

into memory a digit at a time from a hex keyboard instead of toggle switches.

Switch debouncing could be performed with a programmed delay following each

key depression. A 64-character keyboard could be used by treating it as four

groups of 16 keys each, with the common side of each key group connected to a

different flag line. In fact, a program to generate the Morse code equivalent of

each key could be written using the Q line as the output.

This circuit can also be used to select one of 16 external devices or I/O ports if

desired. Using the latter technique would permit up to 128 I/O lines. Cascading

CD4515's would permit even larger numbers of I/O lines to be handled.

A low-cost video terminal can be made using the "Scopewriter" (POPULAR

ELECTRONICS, August 1974), or you can interface your computer with a

cassette data interchange system.

 20

We have only scratched the surface of I/O circuits for the Elf. The real fun (and

program training) starts when you think of new things to attach to the output lines

and start writing programs to activate them.

The major drawback with a RAM, or memory, system is that data stored in it is

erased when the main power source is shut down. (Of course, if you could use a

ROM, this wouldn't be a problem. However, ROM's must be preprogrammed with

the memory data you wish to save, a costly and time-consuming approach.)

Adding a cassette interface doesn't entirely eliminate the problem because a

"bootstrap" is still required to be stored in memory to run the cassette.

The use of low-power COSMOS RAM IC's and a 9-volt mercury battery, as

shown in Fig. 4, will allow you to save programs in memory for up to six months

even with the main power to the computer turned off. The 1822 RAM's shown are

in-compatible with the 2101's specified for the original project, but some of the

RAM's must be rewired as shown.

With the COSMOS RAM's installed, you can turn off power to the computer at

any time. The mercury battery will supply the required standby power to the

memory system so that the program will be ready to run immediately when the

computer is again powered up. The newly added STANDBY switch should be

turned on (+5 volts) only after power is turned on. It should be off to hold pin 17

of the RAM's at ground potential before removing power from the system.

Fig. 4.(12) Using a low-power COSMOS RAM and a 9-volt battery permits saving

programs in memory.

Periodically check the battery's output; if it should fall too low, the memory

system won't be able to hold data.

 21

The last piece of hardware we will discuss here is the simple output driver shown

schematically in Fig. 5. This is a conventional driver for almost anything that

doesn't require more current than the transistor is capable of safely handling. The

diode in the relay circuit removes the reverse transient spike that might otherwise

damage the transistor. You can substitute a LED or even a load resistor for driving

a power stage.

More Programming. The single-line output program shown below is a simple

program that will flash the Q LED at a preset rate. It also provides a

programmable square wave on the Q line.

Step M Bytes Comment

 1 0000 7A 0-->Q

 2 0001 F8 10 B1 10-->R1.1

 3 0004 21 R1.1

 4 0005 91 R1.1-->D

 5 0006 3A 04 Repeat step 3 if D = 00

 6 0008 31 00 Go to step 1 if Q = 1

 7 000A 7B 1-->Q

8 000B 30 01 Go to step 2

When you run this program, the square-wave frequently depends on the settings of

the input switches. You can change frequency at any time. For higher frequencies,

change B1 at M(0006) to A1 and 91 at M(0008) to 81. You can now select any of

256 different frequencies by altering the settings of the switches.

To modify the program to sweep the audio frequency range, use the following

program:

Step M Bytes Comment

 1 0000 F8 FF A2 FF-->R2.0

 2 0003 7A 0-->Q

 3 0004 82 A1 R2.0-->D; D-->R1.0

 4 0006 21 81 R1.1; R1.0-->D

 5 0008 3A 06 Repeat step 4 if D = 00

 6 000A 31 03 Go to step 2 if Q = 1

 7 000C 7B 22 82 1-->Q; R2.1; R2.0-->D

 8 000F 32 00 Go to step 1 if D = 00

 9 0011 30 04 Go to step 3

This program can be used in audio test applications. Note that R2 is used as a

second counter that causes the square-wave frequency to change after each cycle.

You can hear what this sounds like by using the circuit shown in Fig. 5.

Very low frequency square waves or long-interval timing, can be programmed by

cascading counters as illustrated in the following flow chart:

 22

The Q line can then be used to activate a relay (as in Fig. 5), which can control

house lights, motors, etc.

Suppose you wish to program a variable-pulse generator instead of square-wave

generator. Use separate counts for the pulse off and on times as illustrated in the

following flow chart:

This program will flash the Q LED and put a square wave on the Q line at a rate

determined by the contents of memory M(0002) from a 10 to some other number.

By referring back to the instruction Subset Table in last month's article, you

should be able to interpret the above program.

Note in the program that R1 is used as a 16-bit decrementing counter (steps 3, 4,

and 5). When the high- order eight bits of this counter reaches 00, the Q line goes

to its opposite stage. Changing steps 2 and 4 to use the low-order byte of R1

increases the Q line's output frequency by a factor of 256.

If you use a 1-MHz crystal in the clock, the above program can generate square

waves at frequencies between 0.3 and 80 Hz, depending on the byte in M(0002).

 23

By changing the B1 instruction at M(0005) to 81, square waves between 80 and

20,000 Hz can be generated. In this manner, your basic computer becomes a

presettable square-wave generator.

We can rewrite the program so that the square wave's frequency becomes a

function of the settings of the toggle switches as follows:

Step M Bytes Comment

 1 0000 F8 FF A2 FF-->R2.0

 2 0003 E2 2-->X

 3 0004 7A 0-->Q

 4 0005 6C B1 Switch byte-->MX, D:D-->R1.1

 5 0007 21 91 R1.1; R1.1-->D

 6 0009 3A 07 Repeat step 5 if D = 00

 7 000B 31 04 Go to step 3 if Q = 1

 8 000D 7B 30 05 1-->Q; Go to step 4

Fig. 5.(13) Circuit to provide outputs used for testing

In a similar manner, you can program bursts of pulses, variable-interval pulse

trains, etc. You can even write a program where a list of bytes specifies a

sequence of different tones to make a programmable music box.

The following two programs are "games" that demonstrate how the COSMAC

instructions can be used. No added I/O circuits are required to run these programs.

 24

Load the following sequence:

Step M Bytes Comment

 1 0000 E1 1-->X

 2 0001 F8 0F A1 0F-->R1.0

 3 0004 64 MX-->display; X + 1

 4 0005 3F 05 Wait for INPUT switch to be depressed

 5 0007 6C Switch byte --> MX,D

 6 0008 F8 0A F7 0A-->D; D-MX-->D

 7 000B 51 64 D-->M1; MX-->display; X + 1

 8 000D 30 0D 00 Stop; 00

Set both the LOAD and MP switches to off then flip RUN to on. Have someone

select any digit between 1 and 9 multiply by 10, add the original digit. Set the

binary code for the least significant digit of the final answer into switches 3, 2, 1,

and 0, and place the other input switches in the down position. When you depress

the INPUT switch, the computer will display the unknown digit.

This program illustrates how to set a memory byte into the output display with a

6C instruction. Note the use of R1 as a memory pointer and the use of the binary

subtract instruction in step 6.

The following program makes the computer "think" of a byte, which you must

guess in no more than seven tries:

Step M Bytes Comment

 1 0000 8A AB RA, 0-->RB.0 = secret byte

 2 0002 F8 AA A3 AA-->R3.0 = memory pointer

 3 0005 53 E3 D-->M3; 3-->X

 4 0007 F8 07 A4 07-->R4.0 = number of turns

 5 000A 64 23 M3-->display; 3 + 1; 3 - 1

 6 000C 2A 3F 0C RA + 1 until INPUT is depressed

 7 000F 37 0F Wait for INPUT to be released

 8 0011 6C 8B Switch byte-->M3; RB.0-->D

 9 0013 F5 33 1A M3-D-->D; Go to step 12 if M3 > RB.0

 10 0016 F8 01 01-->D

 11 0018 30 22 Go to step 16 (show D)

 12 001A 3A 20 Go to step 15 if D = 00

 13 001C 53 64 D-->M3; M3-->display; 3 + 1

 14 001E 30 1E Stop loop

 15 0020 F8 10 10-->D

 16 0022 53 64 23 D-->M3-->display; 3 + 1; 3 - 1

 17 0025 24 84 R4-1, R4.0-->D (turn counter)

 18 0027 3A 0C Go to step 6 if D = 00

 19 0029 8B 7B RB.0-->D; 1-->Q

 20 002B 30 1C Go to step 13 (show D and stop)

Place both the MP and LOAD switches in the off position after toggling the

program. When you start the program by operating RUN; AA is displayed. Now,

try to guess what byte the computer has selected by setting the eight INPUT

switches and depressing the main INPUT switch. If 00 is displayed you guessed

correctly; if 01 is displayed, your guess is too low; if 10 is displayed, your guess is

 25

too high. You lose after seven wrong tries, at which point, the computer turns on

its QLED and the displays indicate the hidden byte. To try again, set RUN to off

and then on.

The subtract instruction in step 9 sets an arithmetic overflow flag (DF) if MX is

equal to or greater than D. The COSMAC instruction manual covers a detailed

explanation of the use of this overflow flag in arithmetic and shift operations.

In Closing. Now that you have some familiarity with programming for the Elf,

look through your back issues of POPULAR ELECTRONICS for some

challenging programs to write. Try the "Logidex" game in the November 1973

issue, "Tug-of-War" game in February 1975, "Electronic Dice" in July 1975, and

the "Executive Digital Temper Countdowner" in December 1975. These are just a

few of the many electronic games you can program instead of building.

HEX NUMBER SYSTEM

Decimal Binary Hex

 0 0000 0

 1 0001 1

 2 0010 2

 3 0011 3

 4 0100 4

 5 0101 5

 6 0110 6

 7 0111 7

 8 1000 8

 9 1001 9

 10 1010 A

 11 1011 B

 12 1100 C

 13 1101 D

 14 1110 E

 15 1111 F

 26

BY JOSEPH WEISBECKER

Build The COSMAC "ELF"

Microcomputer
Part 3:

How to expand memory, plus more programs

IN TWO previous articles (POPULAR ELECTRONICS, August 1976 and

September 1976), we discussed the construction of the low-cost Elf

microcomputer, gave some programming examples, and described some low-cost

optional input/output circuits. Here we will examine some software operating

systems and discuss adding 1024 bytes of memory for as little as $20.

Operating Systems. An operating system is a program that makes it easier to

program and use your computer. For example, if you want to change M(43) in the

basic Elf memory, you would have to start at M(00) and step through memory to

location 43 before you could change it. Program 1 is a simple opoerating system

for the Elf microcomputer. It lets you directly examine or modify any memory

location. It also allows you to start program execution at any memory location.

We call Program 1 ETOPS-256 (Elf Toggle OPerating System for 256-byte

memory). After loading ETOPS in RAM, it can be used to help you load and run

other programs.

To examine a memory location using ETOPS, set 01 into the toggles. Flip the

RUN switch up and 01 will be displayed. Now set the address of the memory byte

you want to examine into the toggles and push the INPUT switch. The next time

you push the INPUT switch, you'll see the selected memory byte displayed. Keep

pushing the INPUT switch to see the sequence of bytes stored in memory.

 27

To modify any memory location, set 02 into the toggles and turn the RUN switch

up. 02 will appear. Set the address of the memory byte you want to modify (via

the toggles).

Push the INPUT switch and the Q light comes on. Now set the toggles to the value

of the byte you want to place in the selected memory location and push the INPUT

switch to store it in RAM. You can store a sequence of new bytes by setting each

byte into the toggles and pushing the INPUT switch. The Q light warns that you

are modifying memory.

If you have the toggles set to 00 when you flip the RUN switch up, you can then

set the toggles to the beginning address of a program you want to execute. Just

push the INPUT switch to start executing your program at the selected address.

Your program will begin execution with R3 as the program counter.

If you've added the battery RAM option to your system, ETOPS will be ready to

use as soon as you turn on power. Since ETOPS uses only 32 bytes, you still have

224 bytes available for your own programs.

Keyboard Systems. Adding a hex keyboard would make your Elf microcomputer

even easier to use, with 16 keys labelled 0 through F, you would have to press

only two keys for each byte you want to store in memory. In the second article, we

described a circuit for monitoring the status of 16 switches or keys. (See

POPULAR ELECTRONICS, Sept. 1976, page 38, Fig.3). If you add this circuit

and a 16-key hex keyboard, you can use Program 2--EHOPS-256 (Elf Hex

OPerating System for 256-byte memory). This program requires 74 bytes of RAM

so you still have 182 bytes left for your own programs. You can also use the hex

keyboard subroutine as part of your program if desired.

 PROGRAM 1--ETOPS-256

 0000 F8 20 A1 R1.0 = work

 03 E1 X=1

 04 6C 64 21 D = toggles

 07 3F 07 Wait for IN on

 09 37 09 Wait for IN off

 0B 32 1D M(1D) if D=00

 0D F6 33 11 M(11) if D=01

 10 7B Q=1

 11 6C A1 R1.0 = toggles

 13 3F 13 Wait for IN on

 15 37 15 Wait for IN off

 17 39 1A M(1A) if Q=0

 19 6C M1 = toggles

 1A 64 Show M1, R1 + 1

 1B 30 13 Repeat M(13)

 1D 6C A3 R3.0 = toggles

 1F D3 P=3

 20 00 Work area

 21 User programs from

 M(21) to M(FF)

 28

After loading EHOPS in memory, you can use it as follows. To load a byte into

any memory location from the hex keyboard, set the toggles to 02 and flip the

RUN switch up. The 02 toggles tell EHOPS that you want to store bytes in

memory. On the hex keyboard, press the most significant digit of a memory

address followed by the least-significant digit. This address byte will be displayed

and tells EHOPS where you want to start loading bytes in memory. You can now

load a sequence of bytes into memory via the hex keyboard. Just press the two

digits (most significant first) of each byte you want to load and they will be stored

sequentially in memory starting at the selected location.

 PROGRAM 2--EHOPS-256
 0000 F8 FF A2 R2.0 = work

 03 F8 23 A5 R5.0 = BSUB

 06 F8 33 A6 R6.0 = HSUB

 09 F8 0D A3 R3.0 = M(0D)

 0C D3 P=3

 0D D5 A1 BSUB, R1.0=D

 0F 6C D, M2 = toggles

 10 3A 14 M(14) if D != 00 (Note: != means 'not

equal')

 12 81 A3 R3.0 = R1.0

 14 F6 3B 1C M(1C) if D=02

 17 D5 E1 BSUB, X=1

 19 64 Show M1, R1+1

 1A 30 17 Repeat M(17)

 1C D5 E1 BSUB, X=1

 1E 51 64 M1=D, show M1, R1+1

 20 30 1C Repeat M(1C)

 22 D3 P=3 (return)

 BSUB

 23 D6 HSUB

 24 FE FE D left x 2

 26 FE FE D left x 2

 28 A0 D6 R1=D, HSUB

 2A 80 F1 52 M2=R1 or M2

 2D 64 22 Show M2

 2F 30 22 Go to M(22)

 31 F0 D5 D=M2, P=5

 HSUB

 33 E2 FC 01 X=2, D+1

 36 FA 0F 52 M2=D and 0F

 39 62 22 Select key M2

 3B 3D 33 M(33) if key off

 3D 7B F8 09 Q=1, D=09

 40 B4 R4.1=09

 41 24 94 R4-1

 43 3A 41 M(41) if R4.1 != 00

 45 7A Q=0

 46 35 46 Wait for key off

 48 30 31 Go to M(31)

 29

To examine any memory location (without changing its contents), set the toggles

to 01 before you flip the RUN switch up. Using the hex keyboard, enter the one-

byte starting address of the sequence of memory locations you want to examine.

Press any hex key twice to step through memory and display the stored bytes.

To run a program you've loaded using EHOPS, set the toggles to 00 before

flipping the RUN switch up. Using the hex keyboard, enter the one-byte starting

address of your program. It will begin running with R3 as the program counter.

 PROGRAM 3

 0050 F8 FF A1 R1.0 = work

 53 F8 00 51 M1=00

 56 E1 64 21 Show M1

 59 F0 FC 01 51 M1+1

 5D F8 10 B2 R2.1 = delay

 60 22 R2-1

 61 92 3A 60 M(60) if R2.1 != 00

 64 30 56 Repeat M(56)

EHOPS controls the hex keyboard with two subroutines called BSUB and HSUB.

BSUB calls HSUB by changing the program counter to R6 with a D6 instruction.

HSUB continuously scans all 16 hex keyswitches until one is pressed. It provides

a switch debounce delay and waits until the key has been released. It then returns

control to BSUB with the value of the pressed key in the least-significant digit of

the byte in D and M2.

BSUB is called by changing the program counter to R5 with a D5 instruction. It

waits until two hex keys have been pressed before returning control to the calling

program with the values of the two keys in the two digits of the byte in D and M2.

The most-significant digit represents the first key pressed. Any program you write

with R3 as the program counter can call BSUB to obtain a byte from the hex

keyboard. If you drive a speaker with the Q lines as described in the September

article, you will hear an audible click each time a hex key is pressed.

Program 3 can be loaded and run using either ETOPS or EHOPS: This program

continuously counts up at a rate determined by the byte at M(5E). Be sure to start

execution at M(50).

 PROGRAM 4

 *C0 F8 F0 AA RA.0=F0

 C3 F8 08 A8 R8.0=08

 30

 C6 D5 5A BSUB, MA=D

 C8 1A 28 A+1, R8-1

 CA 88 3A C6 M(C6) if R8.0 != 00

 *CD F8 F0 AA RA.0=F0

 D0 F8 08 A8 R8.0=08

 D3 EA F0 A7 R7.0=MA

 D6 64 28 Show MA, A+1, 8-1

 D8 F8 FF AC RC.0=FF

 D8 7B 87 Q=1, D=R7,0

 DD FF 01 D-01

 DF 3A DD M(DD) if D != 00

 E1 7A 87 Q=0, D=R7.0

 E3 FF 01 D-01

 E5 3A E3 M(E3) if D != 00

 E7 2C 8C RC-1

 E9 3A DB M(DB) if RC.0 != 00

 EB 88 3A D3 M(D3) if R8.0 != 00

 EE 30 CD M(CD) if R8.0=00

 F0-F7 = Table of tone values

Program 4 should be loaded and run using EHOPS. You should also have a

speaker attached to the Q line. Start this program at M(C0) with EHOPS. You can

then enter eight bytes via the hex keyboard. These bytes should have values

between 02 and 7F for best results. Each byte represents the frequency of a tone

you will hear via the speaker. After you enter the eighth byte you'll hear the eight-

tone sequence repeated over and over. You can restart the program at M(CD) to

hear a previously entered tone sequence.

 31

Fig. 1.(14) Address latch. *Connect pin 19 of original 2101 RAM's to A10 instead

of ground.

 PROGRAM 5

 0000 F8 00 B1 R1.1=00

 03 F8 FF A1 R1.0 = work

 06 F8 00 51 M1=00

 09 E1 64 21 Show M1

 0C F0 FC 01 51 M1+1

 10 F8 10 B2 R2.1 = delay

 13 22 R2-1

 14 92 3A 13 M(13) if R2.1 != 00

 17 30 09 Repeat M(09)

An operating system can be designed to incorporate any desired feature. For

example, you might want to examine the contents of internal 1802 registers or

control the operation of a cassette recorder. As more features are needed, you may

want to dedicate the entire 256 bytes of memory in the basic system to your

operating system and add another section of memory for your other programs. The

256-byte operating-system memory can be battery powered and protected from

modification by the MP switch so that it is always ready for use.

 32

Fig. 2.(15) Eight low-cost readily available 2102 RAM's (1024 x 1) and two

transmission gate packages.

Memory Expansion. You can add 1024 bytes of memory to an Elf

microcomputer using inexpensive, readily available 2102-type static RAM's as

shown in Figs. 1 and 2. The 10k bus pull-up resistors are required if the high-

output level of the RAM chips isn't at least 3 volts. Bits 0 and 1 of the high-order

address byte are clocked into the address latch with TPA (Fig. 1). These two

latched bits are used with the low-order COSMAC address byte to provide the

required 10-bit address for the 2102 RAM's. Bit 2 of the high-order address byte is

clocked into the address latch for use in selecting eith the original 256-byte RAM

or the added 1024-byte section of RAM. Disconnect pin 19 of the original two

2102 RAM chips from ground and connect to pin 12 of the 4042 address latch in

Fig. 1.

The original 256-byte memory will now be addressed as 0000-00FF and the new

1024-byte memory will be addressed as 0400-07FF. Since all of the previous

programs assumed one-byte addresses, they will not run in this expanded memory

system. Programs for systems with more than 256 bytes of memory must have

both the high-order and low-order bytes of address registers properly set. The

previous programs can be easily modified to run in the expanded system by

initializing both high- and low-order bytes of any 16-bit register used to address

memory. The foregoing counting program could be modified to run at M(0000) in

an expanded RAM system as shown in Program 5. In general, it adds only a few

bytes to program for an expanded-memory system. By adding bits to the address

latch of Fig. 1, you could address up to 64k bytes of RAM. Instead of addressing

extra memory, the high-order address bits could be used to select input/output

circuits or devices.

 33

Don't forget that adding memory will increase system power requirements. As the

system is expanded, make sure your external power supply can handle the

increased current requirements. With this in mind, you'll find that the Elf can be

tailored to your needs at low cost. •

A READER'S ELF PROGRAMS

I recently constructed the COSMAC Elf described in your August (1976) issue

and thoroughly enjoyed the construction and testing of this microprocessor system.

I build approximately two projects a month that are illustrated in your magazine–

plus some from other sources. This particular project turned out to be the most

interesting I have ever constructed. Here are three programs that I found useful in

illustrating various system functions.

Program I is simply an expansion of your Q-light program with additional

decisions that alternately turn the Q light on and off when the input switch is

depressed.

Program II displays and increments successive hex characters each time the input

button is depressed. To do this, it was necessary to learn how to input to and

output from the memory, using pointers in registers, and also to do simple

arithmetic through the accumulator register (D register).

Program III plays SOS in Morse code. The program should be loaded through the

system switch registers if you have a half hour without interruption. With this

program, registers are used for pointers to subroutine loops set up for time delay.

Three subroutines for 0.5 second, 1 second and 3 seconds are established,

addressed by changing the program counter. The main program simply turns the Q

light on and off at intervals determined by the subroutines. The memory provided

in the basic Elf system (256 bytes) is enough for approximately 19 code elements.

Each code element requires only 10 instructions for an on and off interval in the

main program. The timing loops require the use of two registers to provide a

sufficient time. In my Elf, I used a 1-MHz crystal. Obviously, changing one

instruction in the loop subroutines will vary the time as necessary. Changing or

adding to the main program can change the code.

Try loading this program with the switch register if you have enough patience.

–Robert Klein

 34

PROGRAM I

SWITCH ON AND OFF 3F

 00

 37

 02

IF Q OFF GO TO 09 39

 09

IF Q ON, TURN OFF AND 7A

RETURN TO 00 30

 00

IF Q OFF, TURN ON AND 7B

GO TO 00 30

 00

 PROGRAM II

STORE DEPENDENT VARIABLE 00 E4

IN LOCATION 77 WITH POINTER F8

IN R4--DESIGNATE R4 AS RX 77

 A4

 F8

 00

 54

 35

STORE INDEPENDENT VARIABLE 01 F8

IN LOCATION 76 WITH POINTER 76

IN R5 A5

 F8

 01 (size of INCR)

 55

DISPLAY AND DECREMENT RX 64

 24

LOOK FOR INPUT SWITCH ON AND 3F

OFF 0F

 37

 10

ADD TWO VARIABLES AND PUT 05

RESULT IN LOCATION 77 F4 (F5 subtract)

(can be changed to subtract 54

to count down)

RETURN TO START OF LOOP 30

 07

 PROGRAM III

 MAIN PROGRAM 7B 7B

7B

 D3 D4

D3

 36

INITIALIZE F8 THIRD DOT F8 F8

F8

 POINTERS 65 * 65 * 79 *

65 *

 A3 A3 THIRD DASH A4

FIFTH DOT A3

 F8 7A A4

7A

 79 * D3 7A

D3

 A4 F8 D3

F8

 F8 65 * F8

65 *

 8D * A3 65 *

A3

 A5 A3

 7B

7B

 7B D4 7B

D3

FIRST DOT D3 FIRST DASH F8 D3

F8

 F8 79 * F8

65 *

 65 * A4 FOURTH DOT 65 *

SIXTH DOT, A3

 A3 7A A3

PAUSE AND 7A

 7A D3 7A

RETURN TO D5

 D3 F8 D3

START F8

 F8 65 * F8

8D *

 65 * A3 65 *

A5

 A3 A3

30

 7B

00

 7B D4

 D3 F8 * If a different

number of

 F8 79 * code elements is

used,

SECOND DOT 65 * SECOND DASH A4 change the

starting address

 A3 7A of each sub

routine, or

 7A D3 move to the end

of memory

 D3 F8 page if

flexibility is

 37

 F8 65 * desired.

 65 * A3

 A3

PROGRAM III

 SUB ROUTINES (Must be loaded in order

indicated

 after main program is

loaded.)

 ½-Sec Loop 1-Sec Loop

3-Sec Loop

 All

instructions same as

 ½-Sec

Loop except where

 indicated

PUT 256 IN REG #1

F8 . .

FF . .

A1 . .

PUT VARIABLE INTO

F8 . .

REG #2 08 * 0F *

30 *

A2 . .

C4 . .

C4 . .

DECREMENT AND LOOP THRU

C4 . .

R1 UNTIL ZERO. THEN

C4 . .

OUTPUT TO DECREMENT

C4 . .

REG #2

21 . .

81 . .

 38

3A . .

 6B ** 7F **

93 **

LOOP BACK TO START

22 . .

R #1 CYCLE UNTIL

82 . .

TOTAL TIME IS USED UP

3A . .

 6B ** 7F **

93 **

RETURN TO MAIN PROGRAM

D0 . .

 * Sets Time

 ** If a different number of code

 elements is used, change this

 instruction to starting

 address of each subroutine

 wait loop (first C4)

 39

PE TESTED

BREAKTHROUGH PROJECT!
BY JOSEPH A. WEISBECKER

PART IV:

Build the PIXIE Graphic Display

Adding one chip to the Elf provides completevideo interface and animated

graphicscapability for less than $25.

If you own an Elf microcomputer (see POPULAR ELECTRONICS August 1976)

or are planning to build one soon, the addition of a single IC and a handful of

support components, and a change in the crystal frequency, can give you Pixie

graphics. The entire graphics system is built into the new CDP 1861 LSI chip that

sells for less than $20 from RCA parts distributors. (A complete kit is available;

see Parts List.) The two other IC's in the optional add-on system are for a crystal

oscillator that allows the graphics IC to generate the correct TV horizontal and

vertical sync pulses.

The photo at the top of this page illustrates what can be done with the original 256

bytes of memory in the Elf when the Pixie graphics system is added. In this article,

we will show you how to install and program the Pixie system to produce this type

of graphics.

Some Details. The unique Pixie graphics system employs the direct memory

access (DMA) capability built into the 1802 microprocessor in the Elf [42] to

work in conjunction with the new graphics IC. This allows you to display any

256-byte segment of memory on a CRT monitor or TV receiver. The output of the

new chip is a 1-volt composite video/sync signal.

http://incolor.inebraska.com/bill_r/elf/html/elf-4-42.htm

 40

The basic Elf project originally published in the August 1976 issue of POPULAR

ELECTRONICS is shown at left with the Pixie components added. Elf II is a

complete kit including a pc board, hexadecimal keypad, Pixie graphics

components and expansion bus (see Parts List).

Fig. 1. Memory addresses of bytes mapped onto TV screen in sample program.

The selected segment of memory appears on-screen as an array of small squares

that represent individual memory bits. If a memory bit is a 1, the appropriate

square will be white, while if a bit is a 0, the square will be dark. Changing the bit

pattern within the memory will change the pattern that appears on-screen. You can

store several different bit patterns (pictures) in memory and, [43]

TABLE I -- TEST PROGRAM

Label M Bytes Comments

Start 0000 90 B1 B2 R1.1,R2.1=00

 0003 B3 B4 R3.0,R4.0=00

 0005 F8 2D A3 R3.0=(main)

 0008 F8 3F A2 R2.0=(stack)

 000B F8 11 A1 R1.0=(interrupt)

 000E D3 P=3 (go to main)

http://incolor.inebraska.com/bill_r/elf/html/elf-4-43.htm

 41

Return 000F 72 restore D,R2+1

 0010 70 restore XP,R2+1

Interrupt 0011 22 78 R2-1,save XP @ M2

 0013 22 52 R2-1,save D @ M2

 0015 C4 C4 C4 no-op (9 cycles)

 0018 F8 00 B0

 001B F8 00 A0 R0=0000(refresh ptr)

Refresh 001E 80 E2 D=R0.0

 ---- ------ 8 DMA cycles (R0+8)

 0020 E2 20 A0 R0-1,R0.0=D

 ---- ------ 8 DMA cycles (R0+8)

 0023 E2 20 A0 R0-1,R0.0=D

 ---- ------ 8 DMA cycles (R0+8)

 0026 E2 20 A0 R0-1,R0.0=D

 ---- ------ 8 DMA cycles (R0+8)

 0029 3C 1E go to refresh (EF1=0)

 002B 30 0F go to return (EF1=1)

Main 002D E2 69 X=2,turn TV on

 002F 3F 2F wait for IN pressed

 0031 6C A4 set MX,D,R4.0=toggles

 0033 37 33 wait for IN released

 0035 3F 35 wait for IN pressed

 0037 6C set MX,D=toggles

 0038 54 14 set M4=D,R4+1

 003A 30 33 go to M33

using software, display them successively onscreen to produce animation effects.

Low-resolution alphanumerics can also be created.

Since the basic Elf has only 256 bytes of memory, we will show how to display

the entire memory on the screen. The memory is mapped as shown in Fig. 1, in an

array of 64 spots wide (eight bytes with eight bits/byte) by 32 spots high to make a

total of 256 bytes.

The byte at M(0000) is displayed at tthe upper-left of the screen; each row on the

screen is equivalent to eight memory bytes. Byte M(00FF) appears at the bottom-

right of the screen.

 42

Circuit Operation. The entire schematic diagram for the Pixie graphics display

system is shown in Fig. 2A. It consists of five components: the 1861 chip, a phono

jack for the video output, and three resistors. The circuit shown in Fig. 2B may be

used to replace the original crystal used in the Elf microcomputer. This is

necessary because, to use the graphics display, the original crystal frequency must

be changed to approximately 1.760640 MHz to generate the correct TV horizontal

and vertical sync pulses. Crystals of this frequency may be expensive. The Fig. 2B

circuit uses a [44] readily available 3.58-MHz color-TV crystal and frequency

divider to generate 1.789773 MHz, which is close enough for the 1861 chip to

perform properly.

The 1861 chip uses the same clock as the 1802 µP chip to trigger internal counters

to provide the TV-like composite sync at pin 6. The graphics display is directly

refreshed from the memory 60 times each second, accomplished by an interrupt

request sent to the 1802 at the same rate.

Fig 2. (16) Video display chip connections are shown at (A), Optional circuit to

replace original Elf crystal is at (B).

http://incolor.inebraska.com/bill_r/elf/html/elf-4-44.htm

 43

"PIXIE PARTS LIST"

C1 -- 330-pF disc capacitor

IC1 -- CDP 1861 video IC (RCA)

IC2 -- 74L00 low-power quad 2-input NAND gate IC

IC3 -- 7474 dual-D flip-flop IC

J1 -- Phono jack

All resistors 1/4-watt, 10% tolerance:

R1,R6 -- 10,000 ohms

R2 -- 2000 ohms

R3 -- 1000 ohms

R4,R5 -- 470 ohms

XTAL -- 3.58-MHz crystal

Misc. -- Printed circuit or perforated board;

 IC sockets (one 24-pin, two 14-pin);

 spacers; machine hardware;

 hookup wire solder; etc.

Note: The following are available from Netronics,

 333 Litchfield Rd., New Milford, CN 06776:

 kit including all of above components except

 those under "Misc." at $24.95;

 complete Elf II kit (basic Elf plus Pixie

 components and hexadecimal keyboard), including

 pc board, keyboard support IC's and expansion

 bus at $99.95, plus $3.00 shipping.

 Connecticut residents, add 7% sales tax.

When the 1802 receives the interrupt request, it temporarily stops the program it is

executing and immediately branches to the interrupt routine previously stored in

memory. This branch occurs when P is automatically set to 1 and X is set to 2.

The interrupt routine program counter is always R1, which must be set to the

address of the interrupt routine before the 1861 is activated and starts sending

interrupts to the 1802. A pulse from NO is sent to pin 10 of the 1861, permitting

this chip to start sending interrupts. A 69 instruction can be used to generate the

1861 activation pulse. The 1861 is always turned off when the Elf is stopped with

the RUN switch down.

In the program shown in Table I, R1 is set to the address of the interrupt routine at

M(0011), R2 is set to the address of the work area (or stack) used subsequently for

byte storage, R3 is set to the main program starting at M(002D), and setting P=3

causes a branch to M(002D) with R3 as the program counter. The main program

permits entry of the bytes at any time via the Elf's toggle switches. This permits

you to see what is happening to the CRT screen as memory bytes are changed.

The program loops on itself until an interrupt signal is generated by the 1861,

activated by the 69 instruction at M(002E).

 44

Exactly 29 machine cycles after the initiation of the interrupt routine, the 1861

requests eight sequential memory bytes by putting down the DMA-OUT (pin-2)

request line for eight bytes (eight machine cycles). This automatically causes eight

memory bytes, addressed by R0, to be sequentially fetched and transferred to the

1861 via the data bus. Note that the C4 instructions at M(0015) are special no-op

instructions that require three cycles for each execution. These are used only to

provide the delay required to between the beginning of the interrupt routine and

the first eight-byte DMA request generated by the 1861 display circuits.

Fig. 3.(17) Diagram showing how to create your own display. This one is for

parts of five lines of Spaceship Program.

 45

TABLE II -- SPACESHIP PROGRAM

M Byte Sequence

0040 00 00 00 00 00 00 00 00

0048 00 00 00 00 00 00 00 00

0050 7B DE DB DE 00 00 00 00

0058 4A 50 DA 52 00 00 00 00

0060 42 5E AB D0 00 00 00 00

0068 4A 42 8A 52 00 00 00 00

0070 7B DE 8A 5E 00 00 00 00

0078 00 00 00 00 00 00 00 00

0080 00 00 00 00 00 00 07 E0

0088 00 00 00 00 FF FF FF FF

0090 00 06 00 01 00 00 00 01

0098 00 7F E0 01 00 00 00 02

00A0 7F C0 3F E0 FC FF FF FE

00A8 40 0F 00 10 04 80 00 00

00B0 7F C0 3F E0 04 80 00 00

00B8 00 3F D0 40 04 80 00 00

00C0 00 0F 08 20 04 80 7A 1E

00C8 00 00 07 90 04 80 42 10

00D0 00 00 18 7F FC F0 72 1C

00D8 00 00 30 00 00 10 42 10

00E0 00 00 73 FC 00 10 7B D0

00E8 00 00 30 00 3F F0 00 00

00F0 00 00 18 0F C0 00 00 00

00F8 00 00 07 F0 00 00 00 00

 46

Each of the eight display refresh bytes requested by the 1861 is internally

converted to a bit serial form and used to provide the luminance (brightness)

pulses that come out of the 1861 at pin 7. The actual raster display consists of 262

horizontal lines for each frame, and there are 60 frames per second. Each display

spot is four raster lines high, which means that each eight-byte display row must

be repeated four times. With the interrupt routine, R0 is initially set to M(0000) to

M(0007) to be fetched and displayed. The time of each raster line is exactly 14

machine cycles to permit the transfer of eight bytes (eight cycles) plus the

execution of three two-cycle instructions during each raster line time. Following

the eight DMA cycles required to refresh the first eight bytes, R0 is restored to its

original value so that it remains pointing at the same eight bytes.

The E2 20 A0 instructions at M(0020), M(0023), and M(0026) are used to occupy

six machine cycles between the DMA requests and to restore R0 to its initial value

before incrementing it by eight during the eight-byte DMA request. The 20

instruction decrements R0.1 back to its initial value if a 256-byte page boundary

was crossed during the preceding eight DMA cycles.

After the first group of eight bytes has been displayed for four raster line times, R0

is permitted to advance to the next group of eight bytes to be displayed. This

process is continued until 32 groups of eight bytes each (256 total) have been

displayed. At this time, the circuits in the 1861 chip cause line EF1=1 (at pin 9)

and the interrupt routine terminates.

Other Considerations. The raster refresh involves the display of 32 groups of

eight bytes, and each row of eight bytes is repeated on four raster line scans. This

means that the display refresh ties up the 1802 µP for slightly more than 128 raster

lines (32 x 4). Since there are 262 raster lines per frame, the µP spends about 50%

of its time performing the display-refresh function.

Since the 1802 and the 1861 clocks must remain synchronized, none of the three-

cycle instructions described in the 1802's user's manual should be used in

programs that run concurrently with this display. The only exception is the use of

the C4 instruction in the interrupt routine.

The sample program given in Table I was designed to run in expanded-memory

systems as well as in the basic 256-byte Elf. In the expanded system, just change

the bytes at M(0019) and M(001C) so that R0 initially points to any 256-byte

segment of the memory you wish to display on the raster. You can write any other

main program to run concurrently with this interrupt routine.

The 1861 chip can also be used to display any number of memory bytes from

eight to 1024 by rewriting the interrupt routine. For example, change the byte at

M(0024) from 20 to 80, and you will see 512 bytes displayed on the CRT screen

as 64 spots horizontally by 64 spots vertically. If you have only 256 bytes of

memory in your system, you will ass the same 256 bytes repeated twice on the

 47

screen. When displaying 512 bytes, each spot represents half the height of those

displayed when 256 bytes are displayed.

One of the main advantages of mapping main memory directly into the monitor or

TV raster is the ability to manipulate the display using the normal instruction set.

In systems that employ an external frame buffer for refresh, specialized

instructions are required to change the buffer contents. The buffer memory also

costs more money. With the refresh buffer approach toward animation, you must

store two picture patterns in memory and alternately transfer them to the buffer

memory. Using the Pixie graphics display described here, you store the same two-

picture patterns in memory but you need only change the initial value of R0 to

alternately display them. Not only do you save the cost of a refresh buffer, you can

greatly simplify the programming.

Construction. The Pixie circuit can be mounted on the original Elf board by

relocating the crystal and two capacitors to the center of the board. Now the 1861

IC goes on the upper left of the board, and the output jack on the rear apron of the

chassis.

Remove the crystal from the Elf and wire the Fig. 2B frequency divider to pin 1 of

the 1802 µP. Then interconnect the two boards exactly as shown in Fig. 2A and B,

including the power lines. Jack J1 can be mounted on a small metal bracket and

secured to the add-on board with No. 4 machine hardware. Also, mount R1 and R2

on the add-on board via "flea" clips because they may have to be changed for

different-value resistors to suit the modulation requirements of the particular

monitor you are using.

Sample Display Program. To test the Pixie, load the program given in Table I,

starting at location M(0000). When this program is run, a random spot pattern

should be displayed on-screen. At this time, you may have to alter the values of

R1 and R2 to produce a tight sync lock and the desired modulation level of the

spots. These are only level-adjust resistors and play no role in the actual sync or

video production. The displayed pattern represents whatever is stored in the Elf's

memory. The top eight rows represent the program given in Table I.

You can familiarize yourself with the new graphics ability of your computer if you

visualize a grid of 64 boxes wide by 32 boxes deep, assuming a 256-byte memory.

Bear in mind that the operating program given in Table I occupies the top eight

lines. Since the program ends at memory location M(003B), load 00 into memory

location M(003F) to complete that line.

Now, to display the spacecraft shown in the lead photo, load the programs given in

Tables Iand II in that order, starting the Table II program at memory location

M(0040). Reset and switch to RUN.

 48

If you wish to create your own display, Fig. 3 illustrates how to arrive at the

correct hex digits. (In this case, the example used is for a small area of the

program in Table II.) Use graph paper to "draw" your picture, shading in the

"spots" you want to be white on the CRT screen. Then transfer the line bit pattern

into the eight hex bytes per line as shown in Fig. 3.

Conclusion. The Pixie system described here adds video graphics to your Elf

microcomputer at very low cost. So far, we have described how the Pixie system

can be used to put simple, stationary images on-screen. Accompanying this article

is a program that will put the graphics in motion. • [Part 4A]

PIXIE ANIMATION PROGRAM
BY EDWARD C. DEVEAUX

THE PROGRAM given here can be used with the Pixie version of the Elf

microcomputer to create animation graphics using only the original 256 bytes of

memory. The interrupt routine uses the same timing as described in previous Elf

articles. However, a counter has been added to this routine, and we load the

refresh address into R0 from R4. The main line of the program has been

completely rewritten and contains shift, roll, and INPUT switch read routines.

The shift routine shifts 16 lines of the display to the right one bit at a time; bits

shifted off the rightmost byte are shifted back onto the display in the high-order

position of the first byte on the line.

LOC COSMAC CODE LNNO SOURCE LINE

 1 .. AN 1802 ANIMATION PROGRAM by E. DEVEAUX

 2 ..

78 3 BEGSFT=#78 .. ADDRESS OF FIRST LINE SHIFTED.

 4 ..

 5 .. THIS PROGRAM PROVIDES VARIABLE SPEED

 6 .. ANIMATION OF THE IMAGE LOCATED AT #78 to

 7 .. #F7 IN MEMORY.

 8 .. SPEED CONTROL IS PROVIDED BY INPUT

SWITCHES.

D0 90 9 GHI R0 ..ZERO HIGH ORDER OF

01 B1 10 PHI R1 ..R1 R2 R3.

02 B2 11 PHI R2

03 B3 12 PHI R3

04 B4 13 PHI R4 ..R4 POINTS TO

REFRESH

05 A4 14 PLO R4 ADDRESS

06 F816 15 LDI A.0(INTRPT)

08 A1 16 PLO R1

09 F813 17 LDI A.0(STACK)

0B A2 18 PLO R2

0C F831 19 LDI A.0(MAIN)

0E A3 20 PLO R3

0F D3 21 SEP R3 ..GO TO MAIN_LINE

10 01020300 22 DC#01020300 ..STACK AREA

13 23 STACK =*-1

http://incolor.inebraska.com/bill_r/elf/html/elf-4a42.htm

 49

 24 ..

 25 ..THIS PROGRAM USES A MODIFIED VERSION

 26 ..OF THE INTERRUPT ROUTINE THAT APPEARED

 27 ..IN COSMAC ELF PART 4.

 28 ..

 29 ..A SHIFT ROUTINE HAS BEEN ADDED THAT MOVES THE

 30 .. STARSHIP FROM LEFT TO RIGHT ACROSS THE CRT.

 31 ..

14 72 32 RETURN,LDXA

15 70 33 RET ..CYCLES

16 22 35 INTRPT,DEC R2 .. 2

17 78 36 SAV ..4 R5 COUNTS REFRESH

18 22 37 DEC R2 ..6 CYCLES, USED TO

19 52 38 STR R2 ..8 DETERMINE WHEN TO

1A 15 39 INC R5 ..10 SHIFT /ROLL.

1B C4 40 NOP ..13

1C 94 41 GHI R4 ..15 R4 TO R0

The 32 lines of the display can be moved up one line by incrementing the starting

refresh address by eight between refresh cycles. Decrementing register 4 (R4)

allows the display to be rolled down. Hence, varying the frequency of shifts or

rolls varies the animation speed of the displayed image.

Control of the speed is via the Elf's conventional INPUT switches. Setting all

switches to zero and depressing the INPUT pushbutton causes a hex 00 to be read

into location 13 (stack), in which case, there will be no movement of the displayed

image. Loading any nonzero bit through the INPUT switches will animate the

image. Any bits loaded are compared to the bits in the low-order byte of R5 and

the bits in the byte read into location 13. Register 5 is used to count the refresh

cycles and is incremented by one every interrupt cycle.

LOC COSMAC CODE LNNO SOURCE LINE

1D B0 42 PHI R0 ..17 REFRESH ADDRESS

1E 84 43 GLO R4 ..19

1F A0 44 PLO R0 ..21

 45 ..

20 80 46 GLO R0 ..23

21 80 47 GLO R0 ..25

22 80 48 REFRESH:GLO R0 .. 27

23 E2 49 SEX R2 .. 29 8 DMA CYCLES

 50 ..

24 E2 51 SEX R2 ..

25 20 52 DEC R0

26 A0 53 PLO R0 .. 8 DMA CYCLES

 54 ..

27 E2 55 SEX R2

28 20 56 DEC R0

29 A0 57 PLO R0 .. 8 DMA CYCLES

 58 ..

2A E2 59 SEX R2

2B 20 60 DEC R0

2C A0 61 ..

 62 ..

2D 3C22 63 BNI REFRESH .. ON EF1 REFRESH

 50

2F 3014 64 BR RETURN .. IS OVER.

31 E2 65 MAIN:SEX R2 .. RX=2

32 69 66 IMP 1 .. TELL 1861 TO

 67 .. TURN ON CRT.

 68 ..SFREAD READS INPUT SWITCHESTO CONTROL

 69 ..SPEED OF SHIFTS/ROLLS.

 70 ..INPUT SWITCH IS STORED AT STACK M(R2).

 71 ..

 72 ..INITIAL VALUE OF STACK IS ZERO AND THERE IS

 73 ..NO MOVEMENT OF STAR SHIP UNTIL A NON ZERO BIT

 74 ..IS INPUT.

33 3F38 75 SPREAD:BN4 CKSHIF .. IF NO INPUT GO

SEE

35 3735 76 WTREAD:B4 WTREAD .. IF TIME TO SHIFT.

37 6C 77 INP 4 .. READ INTO STACK.

 78

38 85 79 CHKSHIF:GLO R5 .. GHI R5 VARY/SPEED

39 F2 80 AND .. OF STAR SHIP.

3A 3233 81 BZ SPREAD .. SHIFT/ROLL BIT

MATCH.

3C F800 82 LDI A.1(BEGSFT) ..BR ROLL 3061

3E B9 83 PHI R9 ..ROLL NO SHIFT

The numbers in the program flow chart (right) refer to the line numbers in the

program. The program can be set up to shift or roll, or shift and roll. The program

is loaded into locations 78 through F7. (Try using the program for the starship

shown in Table II of the Pixie article.) Only the data loaded into 78 through F7 is

shifted, but the entire area from 00 through FF is rolled.

Loading the program exactly as it is listed here will enable the shift routine only.

Loading a 38 (SKP instruction) in location 5F (line 111) will enable both shift and

roll routines. Loading 30 61 (BR ROLL) in locations 3C and 3D (line 82) will

enable only the roll routine.

After loading and running the program, animation of the display will begin after

any nonzero byte is loaded via the INPUT switches and operation of the INPUT

pushbutton. By varying the INPUT bit pattern, you can control the speed of the

animation.

If you have never seen a stack in "motion" when a program is running, take a look

at displayed location 13. Then vary the speed. •

http://incolor.inebraska.com/bill_r/elf/html/elf-4a45.htm

 51

3F F878 84 LDI A.0(BEGSFT)

41 A9 85 PLO R9 ..R9=FIRST LINE

42 F810 86 LDI 16 ..TO SHIFT.

44 A6 87 PLO R6 ..SHIFT 16 LINES.

45 99 88 MXTLNE:GHI R9

46 BA 89 PHI RA ..SAVE ADDRESS OF 1st

47 89 90 GLO R9 ..ON LINE IN RA

48 AA 91 PLO RA

49 F807 92 LDI 7 ..R7=BYTES TO SHIFT-1.

4B A7 93 PLO R7

4C 09 94 LDN R9

4D B8 95 PHI R8 ..SAVE 1ST BYTE ON

4E 76 96 SHRC ..LINE IN R8.1

4F 19 97 MXTBYT:INC R9 ..POINT R9 TO NEXT BYTE.

50 09 98 LDN R9 ..LOAD NEXT BYTE.

51 76 99 SHRC ..SHIFT RIGHT.

52 59 100 STR R9 ..STORE BYTE

53 27 101 DEC R7

54 87 102 GLO R7 ..CHECK IF ALL BYTES

55 3A4F 103 BNZ MXTBYT ..SHIFTED.

57 98 104 GHI R8 ..PUT BIT 0 of 8TH

58 76 105 SHRC ..BYT ON BIT 7 OF

59 5A 106 STR RA ..1ST BYT ON LINE.

5A 19 107 INC R9 ..R9=BYTE 0 NXT LINE.

5B 26 108 DEC R6

5C 86 109 GLO R6 ..CHECK IF 16 LINES

5D 3A45 110 BNZ NXTLNE ..SHIFTED.

5F 3033 111 BR SFREAD ..SKP 38 ROLL AND SHIFT.

61 84 112 ROLL:GLO R4 ..INCREMENT R4 ONE LINE

62 FC08 113 ADI 8 ..ROLL SCREEN UP.

64 A4 114 PLO R4

65 94 115 GHI R4 ..CHANGE LNNO 116 TO

66 F800 116 LDI 00 ..ADCI 0 7C00 IF MORE

68 B4 117 PHI R4 ..THAN 256 BYTES.

69 3233 118 BZ SFREAD

6B 84 119 GLO R4

6C B4 120 PHI R4

6D 3033 121 BR SFREAD

6F 00 122 DC #00

 123 ..ENTER IMAGE TO BE SHIFTED IN LOCATIONS

 124 ..X'78' - x'F7'.

 125 END

 52

Links

This book: http://incolor.inebraska.com/bill_r/elf/html/elf-1-33.htm

Group: http://groups.yahoo.com/group/cosmacelf/message/138

BMP802: http://groups.yahoo.com/group/cosmacelf/message/138

http://incolor.inebraska.com/bill_r/elf/html/elf-1-33.htm
http://groups.yahoo.com/group/cosmacelf/message/138
http://groups.yahoo.com/group/cosmacelf/message/138

 53

 54

 55

 56

	Build The COSMAC "ELF" A Low-Cost Experimenter's Microcomputer
	BY JOSEPH WEISBECKER
	Part 1: Simple-to-build computer trainer can be expanded for advanced applications Part 2: Some hardware improvements and more programming details
	Part 3: How to expand memory, plus more programs
	Build The COSMAC "ELF" A Low-Cost Experimenter's Microcomputer
	Part 1
	Build The COSMAC "ELF" A Low-Cost Experimenter's Microcomputer
	Part 2
	Build The COSMAC "ELF" Microcomputer

